

ANNUAL WATER QUALITY REPORT

WATER TESTING PERFORMED IN 2018

Presented By

PWS ID#: 934000

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2018. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please remember that we are always available should you ever have any questions or concerns about your water.

Where Does My Water Come From?

The City of Washougal has two sources supplying our drinking water. Our main production facility is located on the West end of town at 411 Third Street. Production at this site started in 1942 with well # SO5. Through the years as demand increased, four additional wells were drilled: SO6 in 1947, SO7 in 1954, S11 in 1983, and S13 in 2007. Our second source, primarily used in the summer, is located in Upper Hathaway Park at 2801 I Street. Here we have one active well, SO4, drilled in 1931. Combined, these two sources provide roughly 575 million gallons of clean drinking water each year.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or <http://water.epa.gov/drink/hotline>.

Count on Us

Delivering high-quality drinking water to our customers involves far more than just pushing water through pipes. Water treatment is a complex, time-consuming process. Because tap water is highly regulated by state and federal laws, water treatment plant and system operators must be licensed and are required to commit to long-term, on-the-job training before becoming fully qualified. Our licensed water professionals have a basic understanding of a wide range of subjects, including mathematics, biology, chemistry, and physics. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water;
- Monitoring and inspecting machinery, meters, gauges, and operating conditions;
- Conducting tests and inspections on water and evaluating the results;
- Maintaining optimal water chemistry;
- Applying data to formulas that determine treatment requirements, flow levels, and concentration levels;
- Documenting and reporting test results and system operations to regulatory agencies; and
- Serving our community through customer support, education, and outreach.

So the next time you turn on your faucet, think of the skilled professionals who stand behind each drop.

Water Treatment Process

Our treatment process consists of two steps. First, chlorine is added as a precaution against any bacteria that may enter the system through line breaks or low pressure events. We carefully monitor the residual chlorine levels, adding the lowest quantity necessary to protect the safety of your water without compromising taste. Next, sodium hydroxide is added to adjust the pH in an effort to minimize the natural corrosion of pipes and plumbing fixtures. After treatment, the water is pumped to sanitized reservoirs, the distribution system, and into your home or business.

Substances That Could Be in Water

In order to ensure that tap water is safe to drink, the U.S. EPA and the state Department of Health prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration and Washington Department of Agriculture regulations establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

We remain vigilant in delivering the best-quality drinking water

Protecting Your Water

Bacteria are a natural and important part of our world. There are around 40 trillion bacteria living in each of us; without them, we would not be able to live healthy lives. Coliform bacteria are common in the environment and are generally not harmful themselves. The presence of this bacterial form in drinking water is a concern, however, because it indicates that the water may be contaminated with other organisms that can cause disease.

In 2016, the U.S. EPA passed a new regulation called the Revised Total Coliform Rule, which requires additional steps that water systems must take in order to ensure the integrity of the drinking water distribution system by monitoring for the presence of bacteria like total coliform and *E. coli*. The rule requires more stringent standards than the previous regulation, and it requires water systems that may be vulnerable to contamination to have in place procedures that will minimize the incidence of contamination. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment of their system and correct any problems quickly. The U.S. EPA anticipates greater public health protection under the new regulation due to its more preventive approach to identifying and fixing problems that may affect public health.

Though we have been fortunate to have the highest-quality drinking water, our goal is to eliminate all potential pathways of contamination into our distribution system, and this new rule helps us to accomplish that goal.

QUESTIONS?

The City of Washougal is dedicated to providing our community and all of its visitors with drinking water of the highest quality. For more information about this report, or for any questions relating to your drinking water, please contact Ryan Baker, Water/Wastewater Superintendent, at (360) 835-2662 or ryan.baker@cityofwashougal.us.

Information on the Internet

The U.S. EPA (<https://goo.gl/TFAMKc>) and the Centers for Disease Control and Prevention (www.cdc.gov) Web sites provide a substantial amount of information on many issues relating to water resources, water conservation and public health. Also, the Washington State Department of Health has a Web site (<https://goo.gl/fyO8XH>) that provides complete and current information on water issues in Washington, including valuable information about our watershed.

Community Participation

You are invited to participate in our public forum and voice concerns about your drinking water. City Council, Planning Commission, and Council Workshop meetings are open to the public to ask questions or state concerns regarding your water. Please visit our Web site at www.cityofwashougal.us for a schedule. Meetings are held at City Hall, 1701 C Street, Washougal, WA.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

BY THE NUMBERS

The number of Olympic-sized swimming pools it would take to fill up all of Earth's water.

800
TRILLION

1¢

The average cost for about 5 gallons of water supplied to a home in the U.S.

The amount of Earth's water that is salty or otherwise undrinkable, or locked away and unavailable in ice caps and glaciers.

99%

50
GALLONS

The average daily number of gallons of total home water use for each person in the U.S.

The amount of Earth's surface that's covered by water.

71%

330
MILLION

The amount of water on Earth in cubic miles.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. And the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 4th stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES								
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source	
Chlorine (ppm)	2018	[4]	[4]	0.64	0.2–1.2	No	Water additive used to control microbes	
Nitrate (ppm)	2018	10	10	2.3	1.9–2.3	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
TTHMs [Total Trihalomethanes] (ppb)	2018	80	NA	2.2	0.51–2.2	No	By-product of drinking water disinfection	

Tap water samples were collected for lead and copper analyses from sample sites throughout the community.								
Substance (Unit of Measure)	Year Sampled	AL	MCLG	Amount Detected (90th %ile)	Sites Above AL/Total Sites	Violation	Typical Source	
Copper (ppm)	2017	1.3	1.3	0.47	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits	
Lead (ppb)	2017	15	0	2.7	0/30	No	Corrosion of household plumbing systems; Erosion of natural deposits	

SECONDARY SUBSTANCES								
Substance (Unit of Measure)	Year Sampled	SMCL	MCLG	Amount Detected	Range Low-High	Violation	Typical Source	
Chloride (ppm)	2014	250	NA	2.66	ND–2.66	No	Runoff/leaching from natural deposits	
pH (Units)	2018	6.5–8.5	NA	7.21	6.93–7.57	No	Naturally occurring	
Sulfate (ppm)	2014	250	NA	3.91	ND–3.91	No	Runoff/leaching from natural deposits; Industrial wastes	

UNREGULATED CONTAMINANT MONITORING RULE - PART 4 (UCMR4)

Substance (Unit of Measure)	Year Sampled	Amount Detected	Range Low-High	Typical Source
Bromochloroacetic Acid (ppb)	2018	0.43	0.38–0.43	Disinfection by-product
Chlorodibromoacetic Acid (ppb)	2018	0.34	ND–0.34	Disinfection by-product
Dibromoacetic Acid (ppb)	2018	16	ND–16	Disinfection by-product
Dichloroacetic Acid (ppb)	2018	0.66	0.36–0.66	Disinfection by-product
Manganese (ppb)	2018	0.48	ND–0.48	Naturally occurring
Trichloroacetic Acid (ppb)	2018	0.79	ND–0.79	Disinfection by-product

OTHER SUBSTANCES				
Substance (Unit of Measure)	Year Sampled	Amount Detected	Range Low-High	Typical Source
Calcium (ppm)	2018	12	NA	Naturally occurring
Conductivity (µmho/cm)	2018	160	150–160	Naturally occurring
Hardness (ppm)	2018	45	38–45	Naturally occurring
Magnesium	2018	3.3	NA	Naturally occurring
Sodium (ppm)	2018	15	13–15	Naturally occurring
Turbidity (NTU)	2018	0.18	ND–0.18	Naturally occurring

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

µmho/cm (micromhos per centimeter): A unit expressing the amount of electrical conductivity of a solution.

LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Amount Detected values for TTHMs and HAAs are reported as the highest LRAAs.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SMCL (Secondary Maximum Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.